A 20 kg, 5 m-long bar of uniform mass distribution is attached to the ceiling by a light string, as shown. Because the string is off-center (2 m from the right edge), the bar does not hang horizontally. To fix this, you place a small object on the right edge of the bar. What mass should this object have, to cause the bar to balance horizontally?
15. Rotational Equilibrium
Equilibrium with Multiple Objects
- Multiple Choice979views7rank1comments
- Multiple Choice
Two kids (m,LEFT = 50 kg, m,RIGHT = 40 kg) sit on the very ends of a 5 m-long, 30 kg seesaw. How far from the left end of the seesaw should the fulcrum be placed so the system is at equilibrium? (Remember the weight of the seesaw!)
739views6rank7comments - Textbook Question
Two people are carrying a uniform wooden board that is 3.00 m long and weighs 160 N. If one person applies an upward force equal to 60 N at one end, at what point does the other person lift? Begin with a free-body diagram of the board.
2471views1rank - Textbook Question
Two people carry a heavy electric motor by placing it on a light board 2.00 m long. One person lifts at one end with a force of 400 N, and the other lifts the opposite end with a force of 600 N. What is the weight of the motor, and where along the board is its center of gravity located?
1914views1comments - Textbook Question
A 0.120-kg, 50.0-cm-long uniform bar has a small 0.055-kg mass glued to its left end and a small 0.110-kg mass glued to the other end. The two small masses can each be treated as point masses. You want to balance this system horizontally on a fulcrum placed just under its center of gravity. How far from the left end should the fulcrum be placed?
1472views - Textbook Question
The mobile in Fig. 12–91 is in equilibrium. Object B has mass of 0.748 kg. Determine the masses of objects A, C, and D. (Neglect the weights of the crossbars.)
314views - Textbook Question
In Fig. 12–103, consider the right-hand (northernmost) section of the Golden Gate Bridge, which has a length d1 = 343 m. Assume the cg of this span is halfway between the tower and anchor. Determine FT1 and FT2 (which act on the northernmost cable) in terms of mg, the weight of the northernmost span, and calculate the tower height h needed for equilibrium. Assume the roadway is supported only by the suspension cables, and neglect the mass of the cables and vertical wires. [Hint: FT3 does not act on this section.]
23views